
1. Introduction
The Southern Ocean is a region of intense air–sea exchange, with regions where mixed layers can reach hundreds 
of meters deep. Here the abyssal ocean is ventilated, and surface waters are subducted downward to be seques-
tered away from the atmosphere for centuries (Wunsch & Heimbach, 2008). As such, understanding the carbon 
cycling of the Southern Ocean is vital. Toward this aim, since 2014 the Southern Ocean Carbon and Climate 
Observations and Modeling (SOCCOM) project has been deploying robotic biogeochemical profilers, known as 
BGC-Argo floats. These floats measure pH, O2, NO3 and optical properties in addition to temperature, salinity, 
and pressure (K. S. Johnson et al., 2017). In this paper we focus first on determining the present day pH proper-
ties of the Southern Ocean by merging float observations with model analyses, and second on assessing how the 
properties have changed in time.

Our primary goal is reporting pH trend magnitudes. This is important as ocean acidification (i.e., decreasing 
oceanic pH and lowering calcium carbonate saturation state) can have large impacts on calcifying organisms 
(Doney et al., 2009, 2020; Henley et al., 2020). These organisms struggle to build skeletons and shells in low pH 
waters where aragonite becomes undersaturated. The impacts of this stress can propagate across the Antarctic 
ecosystems and further. While it is pressing to address this issue globally, it is especially important to quantify 
Southern Ocean pH, as acidification is hypothesized to be occurring faster here than in the global average due to 
the region's relatively low carbonate ion concentrations (McNeil & Matear, 2008; Orr et al., 2005).

Abstract Ocean acidification has potentially large impacts on calcifying organisms and ecosystems. 
Argo floats equipped with biogeochemical (BGC) sensors have been continuously measuring Southern 
Ocean pH since 2014. These BGC-Argo floats were deployed as part of the Southern Ocean Carbon and 
Climate Observations and Modeling project. Here we present a SOCCOM-era Objectively Mapped pH 
(SOM-pH) 2014–2019 climatology and explain the method for constructing this product. We show example 
SOM-pH fields demonstrating the spatial and temporal structure of Southern Ocean pH. Comparison with 
previous ship-based measurements reveals decreases in pH of up to 0.02 per decade, with a structure decaying 
with depth. An assessment of the trend structure reveals a pattern indicative of the meridional overturning 
circulation. Upwelling waters that have not been in recent contact with the atmosphere show negligible or 
small trends, while surface and downwelling waters that have had more exposure to the atmosphere show the 
strongest trends. Thus comparison of this new BGC-Argo mapped pH estimate to historic observations allows 
quantifying the structure of Southern Ocean acidification.

Plain Language Summary Robotic instruments that measure ocean acidity levels (pH) have been 
deployed in the Southern Ocean since 2014. Here we compile these observations into a map that is an estimate 
of the current Southern Ocean pH. This paper discusses how the map is made and gives a brief description of 
its features. We then compare it to pH measurements made from ships prior to 2014. Analyzing the structure 
of these differences in space and time reveals how the Southern Ocean is becoming more acidic. We find that 
there is significant structure to the changes. In general the changes are largest at the surface and become smaller 
at greater depth. However, there are horizontal differences. Ocean locations where winds pull up deep waters 
have smaller trends than regions where the winds are pushing waters down. Thus the ocean changes show a 
signature associated with the large-scale circulation.
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Decline in upper ocean pH has been observed throughout the Southern Ocean (Takahashi et al., 2014), with trend 
values around −0.02 per decade in Drake Passage (Munro et al., 2015) and in the South Pacific (Midorikawa 
et al., 2012; Williams et al., 2015). Regional differences are found. For example, a larger trend was found pole-
ward of the Polar Front (PF) than equatorward, and was attributed to intensified wind-driven upwelling of deep 
carbon-rich waters (Midorikawa et al., 2012). Uptake of atmospheric CO2 and oceanic advection of anthropo-
genic carbon also contributed to the observed acidification (Henley et al., 2020).

Our secondary goal is to determine the spatial pattern of the trend, and pose hypotheses for causal mechanisms 
based on this pattern. We investigate the relationship of trend magnitude with known water masses and circu-
lation patterns. The Southern Ocean can be categorized by spatial regions (Gray et al., 2018; Orsi et al., 1995; 
Talley, 2011). The most poleward region is often referred to as the Sea Ice Zone (SIZ). The Antarctic Circumpolar 
Current (ACC) system is found north of the SIZ, with the region between the Southern ACC Front (SACCF; 
ranging from 54.0° to 65.5°S with a mean of 59.8°S) and the Polar Front (PF; ranging from 46.5° to 61.9°S with 
a mean of 54.4°S) known as the Antarctic Zone (AZ). Moving equatorward, but still in the ACC, the Polar Frontal 
Zone (PFZ) sits between the PF and the Subantarctic Front (SAF; ranging from 38.3° to 57.9°S with a mean of 
49.7°S). To the north of the ACC the Subantarctic Zone (SAZ) is found between the SAF and the Subtropical 
Front (STF; ranging from 33.4° to 48.1°S with a mean of 42.3°S). The Subtropical Zone (STZ) is the most 
equatorward zone found in the Southern Ocean. The circulation is broadly characterized by upwelling of Upper 
and Lower Circumpolar Deep Water (UCDW, LCDW) in the AZ. Upwelled waters then travel both poleward 
and equatorward, interact with the atmosphere, and subduct again to form a double cell Meridional Overturning 
Circulation (MOC, Marshall & Speer, 2012). The poleward traveling waters become Antarctic Surface Waters 
(AASW) and eventually subduct as Antarctic Bottom Waters (AABW) to form the lower MOC cell. Equatorward 
traveling waters are transformed into Subantarctic Mode Water (SAMW), Antarctic Intermediate Water (AAIW), 
and Subantarctic Surface Water (SASW), and populate the upper MOC cell. We aim to assess how pH changes 
project on these zones and water masses.

In addition to BGC-Argo floats there are two resources enabling this work. The first is bias corrected monthly 
mean fields from a Biogeochemical Southern Ocean State Estimate (B-SOSE, Verdy & Mazloff, 2017). The bias 
correction is determined by objectively mapping the monthly binned BGC-Argo pH measurement differences to 
B-SOSE. This correction field is then added to the B-SOSE monthly means to determine a SOCCOM-era Objec-
tively Mapped pH (SOM-pH) product. By construction, the derived product has much of the same structure as 
B-SOSE, but with negligible bias compared to the BGC-Argo pH observations from which it is created. SOM-pH 
is a monthly, spatially smooth, pH mapped estimate that is intended to average out eddy signals, making it ideal 
for comparison to historical observations. This stands in contrast to previous match-up-based comparison meth-
ods used to infer changes (Midorikawa et al., 2012; Ríos et al., 2015; Swart et al., 2018), as smoothing the eddy 
signals can reduce the noise incurred in match-ups.

The other resource allowing us to estimate pH trends and patterns are the quality controlled in situ pH measure-
ments from the Global Ocean Data Analysis Project version 2 (GLODAPv2) data set. These GLODAPv2 data, 
the BGC-Argo float data, and B-SOSE are described in Section 2. The methods used in the work, including the 
algorithm for constructing the SOM-pH product, are described in Section 3. In Section 4 the GLODAPv2 and 
SOM-pH differences are cataloged by depth and region, and linear regressions are applied with respect to time to 
determine trends. We find significant trends, with a spatial structure indicative of the influence of the Southern 
Ocean MOC, and we end with a discussion of this result in Section 5.

2. Data
Throughout this analysis, total scale pH at in situ temperature and pressure is used for all products.

2.1. GLODAPv2

GLODAPv2 is a synthesis of biogeochemical data collected through chemical analysis of water samples. 
Discrepancies in observational methodologies do result in uncertainties (Carter et al., 2018; Liu et al., 2011; Yao 
et al., 2007), but the data has been subjected to quality control to identify outliers and correct for most meas-
urement biases (Key et al., 2015; Olsen et al., 2016). The 2019 release includes pH observations taken between 
1994 and 2017 (Olsen et al., 2019). However, these are concentrated around the summer season and along repeat 
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hydrography lines. These data are largely independent from the mapped climatology presented here, the caveat 
being that they were used to develop B-SOSE. GLODAPv2 also provides a gridded product normalized to the 
year 2002 (Lauvset et al., 2016), to which we compare in the results section.

2.2. BGC-Argo

Argo profiling floats are providing temperature and salinity measurements of the global ocean (G. C. Johnson 
et al., 2022). Since 2014, some of these floats have been equipped with biogeochemical sensors and deployed 
through the SOCCOM project (Riser et al., 2018). The BGC-Argo-derived pH data that are used for our mapping 
were obtained from the Argo Global Data Assembly Centre (Argo GDAC) on 30 March 2021 (Argo, 2020). 
Details on the pH measurements and quality control can be found in K. S. Johnson et al.  (2017) and Maurer 
et al. (2021). Briefly, pH was measured with Deep-Sea DuraFET sensors (K. S. Johnson et al., 2016) that quan-
tify proton activity with an Ion Sensitive Field Effect Transistor. Each sensor was calibrated in the laboratory to 
determine its temperature and pressure response. The sensor reference potential was calibrated for pH on the total 
proton scale using spectrophotometric pH measured with purified meta-cresol purple (Liu et al., 2011). After 
deployment, sensors were corrected for drift or offsets in the reference potential using the SOCCOM Assessment 
and Graphical Evaluation (SAGE) software (Maurer et al., 2021). SAGE assesses statistically significant drift or 
offset by comparing sensor measurements at depths below 1,000 m to values predicted from empirical models 
fit to ship-based measurements (Bittig et al., 2018; Carter et al., 2018) and driven by float oxygen, temperature, 
salinity, and position data.

2.3. B-SOSE

B-SOSE assimilates satellite and in situ physical and biogeochemical data, including both GLODAPv2 and 
BGC-Argo data, into the MIT ocean general circulation model using the software developed by the consortium 
for Estimating the Circulation and Climate of the Ocean (ECCO, Wunsch & Heimbach, 2013). The biogeochem-
ical component is known as the Nitrogen version of the Biogeochemistry with Light, Iron, Nutrients, and Gases 
model (NBLING, evolved from Galbraith et al., 2010). NBLING includes a full accounting for budgets of carbon, 
oxygen, nitrate, phosphate, and iron. Three phytoplankton classes are also modeled.

The B-SOSE objective is to estimate the large-scale Southern Ocean biogeochemical and physical properties, 
including sea ice, and provide complete budget-closing diagnostics enabling interpretation of this evolving state. 
The aim is to be as consistent as possible with observations. To accomplish this the assimilation procedure adjusts 
model inputs of initial conditions and atmospheric state. However, due to the closed-budget model constraint 
there is no nudging of interior ocean properties, and thus B-SOSE may exhibit biases with respect to the assim-
ilated data.

The first B-SOSE produced was a solution with 1/3° grid spacing for the period 2008–2012. Validation, analysis, 
model inputs, code, and comprehensive diagnostics have been published demonstrating the maturity of BGC state 
estimation (Verdy & Mazloff, 2017). A subsequent 2013–2019 SOCCOM-era B-SOSE was produced at 1/6° grid 
spacing. This work uses the “Iteration 135” of this 1/6° B-SOSE solution (available at http://sose.ucsd.edu/SO6/
ITER135/).

3. Methods
3.1. Construction of a pH 2014–2019 Climatology

The SOM-pH product is constructed with a remove/restore objective mapping procedure to bias correct B-SOSE. 
The remove step involves calculating the B-SOSE–observation misfits. These misfits are objectively mapped to 
make a bias correction field. The restore step involves adding the bias correction field to B-SOSE. To start we 
take the “Iteration 135” B-SOSE solution and make monthly averages of potential temperature (T), salinity (S), 
and pH sampled point by point on a 1° × 1° horizontal grid at 41 depth levels between 1 and 2,000 m. These fields 
become the first guess, xb (i.e., the background state). This state consists of T, S, and pH. To combine them into 
one vectorized state space we first remove the time means from the three fields and normalize each by its standard 
deviation. The BGC-Argo pH and Argo T and S profiles are also vectorized and then normalized in the same way 
using the model-derived mean and standard deviation values.

http://sose.ucsd.edu/SO6/ITER135/
http://sose.ucsd.edu/SO6/ITER135/
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B-SOSE assimilates BGC-Argo observations including pH, but still has biases with respect to the observations. 
The goal is to take this B-SOSE first guess estimate, xb, and add a monthly bias correction. We define the Argo 
and BGC-Argo observations as vector y and define H to be a 3D trilinear interpolation operator mapping the 
B-SOSE estimate to data locations. Thus the vector (y − Hxb) gives the observation–B-SOSE misfits. We then 
carry out an objective mapping (also known as optimal interpolation) of these misfits to yield bias correction 
fields (Bretherton et al., 1976; Ide et al., 1997). Adding these fields back to B-SOSE yields the SOM-pH product, 
and is derived with the following algorithm,

𝐱𝐱𝐚𝐚 = 𝐱𝐱𝐛𝐛 +
(

𝐏𝐏𝐏𝐏𝐓𝐓
)(

𝐏𝐏𝐏𝐏𝐏𝐏𝐓𝐓 + 𝐑𝐑
)−1

(𝐲𝐲 −𝐏𝐏𝐱𝐱𝐛𝐛). (1)

Here xa, which is referred to as the “analysis state,” is the SOM-pH product. R is the prescribed “noise” in 
the data, accounting for all signals not accounted for in the mapping, which includes mesoscale variability. P 
is the covariance in space of each variable, and also the cross-covariance of the T, S, and pH fields with the 
other variables. We estimate this full covariance matrix from an ensemble drawn from B-SOSE, but damp the 
cross-covariance of pH with T and S by a factor of 0.1, because T and S observations far outnumber pH observa-
tions, and we want the mapping to lean more heavily on the pH observations.

We also damp spurious long-distance covariance by applying a “localization” operator that reduces the covari-
ance magnitude between distant points. This damping is set using a Gaspari and Cohn (1999) localization func-
tion with scales of 21° longitude, 7° latitude, and 2 “vertical levels.” Vertical level spacing increases with depth. 
The mapping algorithm can be influenced by observations at up to twice these distances depending on P, but this 
influence is downweighted as a function of distance.

In the method PH T represents our estimate of the covariance of the quantity to be estimated (i.e., pH) and the 
data, the model–data covariance matrix. Similarly (HPH T + R) represents our estimate of the covariance between 
all pairs of data, the so-called data–data covariance matrix. Thus we first project the data–B-SOSE differences 
through the inverse of the data–data covariance in order to account for data redundancy and mutual-information, 
and then project the result onto the model grid via the model–data covariance matrix. As the data–data covariance 
matrix functions as the denominator of this equation, the influence of the data decreases as R increases.

The choice of the signal-to-noise ratio, roughly the magnitude of P compared to the magnitude of R, has a signif-
icant impact on the solution. Here, we have normalized the data, so the signal covariance, P, has a magnitude of 
approximately 1, making the signal-to-noise determined by R. As stated above, R accounts for all signals unac-
counted for in the mapping. For pH we choose R to be the spatially variable uncertainty used in B-SOSE (Verdy 
& Mazloff, 2017), which was derived from a model-variability analysis (i.e., it is a specified fraction of the stand-
ard deviation of a long free model run), though normalized in consistency with the data. To emphasize the use of 
pH observations in construction of the map, we use a much larger value of R = 100 for temperature and salinity.

We generate a bias-corrected map for each month. There are a few mapped points that end up appearing question-
able or unphysical, likely due to large variability in the data that is not properly accounted for in the setup of the 
problem (e.g., a poor choice of signal to noise). Therefore, once the 12 monthly maps are constructed, we carry 
out a quality control process by comparing monthly map values to the adjacent months. No temporal correlation 
was assumed during the mapping process, so this is an independent quality control opportunity to alleviate the 
impact of data outliers. For each grid point and for each month, we calculate the absolute difference with the 
previous and the next months (pHt−1 and pHt+1, respectively). Values are replaced with the average between pHt−1 
and pHt+1 if they meet the following criteria: (a) both differences exceed a threshold; (b) the value is an extremum 
of the time series; and (c) pHt−1 and pHt+1 do not meet criteria 1 and 2. This is applied twice, the first time with a 
threshold value of 5 times the pH uncertainty field, R, used in the mapping, and the second time with a threshold 
value of 2 times R. This QC procedure results in replacement of approximately 1% of grid points, implying we 
are not throwing out important signals.

3.2. Outlier Removal and Trend Fitting Methods for Comparison of SOM-pH to Historic Data

To achieve our goal of examining trend magnitudes and spatial patterns, the historic data differences from 
SOM-pH are sorted in spatial bins. Here we discuss two methods employed in the analysis. The first is an outlier 
removal for each bin, and the second involves calculating the trends and their uncertainty. We are fitting trends 
in sparse data, and this section describes of how the uncertainty calculation accounts for this temporal spread.
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In each spatial bin we take the difference of the GLODAPv2 observations with SOM-pH, and we find that there 
are occasional large differences (i.e., outliers). These are likely real signals due to eddy variability, but due to 
sparse sampling could be overly influential. In an attempt to evaluate the influence of outliers on the trend values, 
we analyze the misfits over 1-month periods and remove observations that exceed 2 standard deviations. The 
following plots are made with the outliers removed, but this stringent outlier removal has only a small effect. 
The results for plots with and without outliers are similar (not shown), giving us confidence that outliers are not 
impacting our results.

To solve for trends in each spatial bin the differences between the GLODAPv2 observations and SOM-pH are 
written as a vector, y. Each difference is assigned an assumed uncertainty of r = 0.01. These differences occur at 
discrete times, and we define H as the regression matrix with the first column being the observation time. The 
trend we seek is given by x(1), where we solve for this slope x(1), as well as an intercept, x(2), given the equality 
y = Hx + r. Here r is a vector of values given by r 2. Also, since x(2) is the intercept a second column of H exists 
that is all ones.

Unlike the data-space inversion used to make the SOM-pH map presented in Section  3.1, here we solve in 
parameter space with the solution being 𝐴𝐴 𝐱𝐱 =

(

𝐇𝐇𝑇𝑇𝐑𝐑−1𝐇𝐇 + 𝐏𝐏−1
)−1

𝐇𝐇𝑇𝑇𝐑𝐑−1 𝐲𝐲 (Wunsch, 2006). Here R is the data 
uncertainty with values of r 2 on the diagonal, and P(1,1) is the expected trend uncertainty on the slope x(1) that 
we have assigned to be 0.01 per decade. The uncertainty we report is given by the square root of the first diagonal 
element of 𝐴𝐴

(

𝐇𝐇𝑇𝑇𝐑𝐑−1𝐇𝐇 + 𝐏𝐏−1
)−1 . The uncertainty is thus reduced by more data or wider temporal coverage, both 

represented in the H matrix, or by lower data uncertainty, which is represented in the R matrix.

4. Results
4.1. The SOM-pH Product

The SOM-pH is constructed using the monthly binned Argo and BGC-Argo data. The pH data count as a func-
tion of time is shown in Figure 1, which shows that the SOM-pH product represents a mean of approximately 
2014–2019, with a “center of mass” of October 2017 (i.e., the SOCCOM-era, though the data are continuing to 
stream in, and we anticipate updated products). The full derived SOM-pH product is available as Data Set S1. 
Here we provide example plots for February and August at 55 and 700 m (Figure 2). Comparing these panels 
allows evaluation of spatial and temporal gradients. The strongest gradients occur with depth, as the pH at 55 m 
is much higher than 700 m. There are significant gradients in latitude at both depths, with the pH tending to be 

Figure 1. Number of profiles for a given month, with Global Ocean Data Analysis Project version 2 (GLODAPv2) in blue 
and BGC-Argo in red. The vertical blue line gives the mean date of the GLODAPv2 observations, which is June 2009. The 
mean data of the BGC-Argo observations used (vertical red line) is October 2017. A minimal amount of BGC-Argo data from 
2013 to 2020 are used in the Southern Ocean Carbon and Climate Observations and Modeling-era Objectively Mapped pH 
product, and thus we consider it a 2014–2019 product in the text.
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much lower in subpolar waters than in subtropical waters. Strong gradients are also noticeable in other frontal 
regions and in boundary regions. There is a seasonal cycle, though the gradients in time are not as strong as in 
space. Even though 55 m tends to be in the mixed layer in winter but not in summer, the pH is not drastically 
different between February and August.

The pH maps plotted in Figure  2 show the float observations for these depths and months as filled circles. 
Because some of the mapping information is propagated via the covariance in depth and cross-covariance from 
temperature and salinity, this is not all the information going into the map. However, it represents the primary 
constraints. Expanses of the Southern Ocean lack float observations, and in these regions the map relies largely 
on B-SOSE. To better illustrate the mapping method and the biases that one may expect, we show the differences 
being mapped and the map itself in Figure 3. Here the circles represent the difference between observations and 
B-SOSE, and the background color plotted represents the bias correction applied to B-SOSE (i.e., the map). 
Where there are data, the bias correction is effective at increasing consistency; the original B-SOSE differences 
and the mapped differences for these example plots are summarized in Table 1. The mean bias in the SOM-pH 
product is greatly reduced compared to B-SOSE, and the standard deviation of the differences is also diminished.

While the misfit to the float data is significantly smaller in SOM-pH than in B-SOSE for all depths and months, 
there is a significant caveat. The corrections shown in Figure 3 have large-scale structure; the field does not look 
noisy. It is apparent that B-SOSE is biased high (i.e., the correction is negative) in the ACC region at 700 m. 
Though one can infer a large-scale bias, we are not bias correcting far from any pH data. We attempted to bias 
correct the B-SOSE solution itself by adjusting initial conditions with a constant along isopycnals, but the bias 
still remains at this point. We also attempted to map using longer correlation scales (i.e., reducing the localiza-
tion). However, there are eddy signals in the data that then overly influence the maps. Thus gaps with no B-SOSE 
bias correction exist in the SOM-pH product. Other depths and months show both large-scale residual features 
and gaps like those in Figure 3 as well. Not all white space in the plots are not gaps in coverage: some represent 

Figure 2. Example pH fields from the Southern Ocean Carbon and Climate Observations and Modeling-era Objectively Mapped pH product: (a) pH at 55 m in 
February, (b) pH at 55 m in August, (c) pH at 700 m in February, and (d) pH at 700 m in August. BGC-Argo float pH observations are superimposed as filled markers 
with black outlines, using the same color scale as the background, so that good agreement blends in and mismatches stick out. Black contours denote, from south to 
north, the Southern ACC Front, Polar Front, Subantarctic Front, and Subtropical Front, following Gray et al. (2018) who used the criteria of Orsi et al. (1995) and an 
Argo temperature and salinity climatology (Roemmich & Gilson, 2009).
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regions with minimal B-SOSE bias, while some are in fact coverage gaps. One may infer that in regions away 
from the float observations the SOM-pH product may still have significant biases relative to the present-day true 
ocean state. Users should be aware of this uncertainty structure, and a best practice would be to consider the 
product to have large uncertainty in regions lacking BGC-Argo data coverage over this period.

4.2. Comparison of the SOM-pH Product to the GLODAPv2 Mapped Estimate

The GLODAPv2 release included a mapped pH estimate (Lauvset et  al.,  2016). This was based on historic 
ship-based observations and has a bias toward summer observations. In deriving this gridded product the 
GLODAPv2 data are normalized to 2002, and thus the map represents a period 15 years prior to the SOCCOM 
mean date. We compare SOM-pH to the GLODAPv2 mapped product at 55 and 700 m, and choose to compare 
only to the SOM-pH December to March fields due to the GLODAPv2 sampling bias. Figures 4a and 4c are 
analogous to Figures 2a and 2c, but for the GLODAPv2 map. Also, note that the color axis is different in Panel 

Figure 3. Example bias correction fields. The filled markers represent BGC-Argo differences from B-SOSE. The mapping algorithm spreads this signal in space in 
accordance with covariance statistics derived from B-SOSE. The bias field derived is then added back to B-SOSE to generate the Southern Ocean Carbon and Climate 
Observations and Modeling-era Objectively Mapped pH product. Panels show the bias correction fields used in generating the panels in Figure 2. Thus the correction 
fields are for (a) 55 m in February, (b) 55 m in August, (c) 700 m in February, and (d) 700 m in August. Black contours denote, from south to north, the Southern ACC 
Front, Polar Front, Subantarctic Front, and Subtropical Front.

Table 1 
Example Mean and Standard Deviation (Std) of Differences From the Observations for the Biogeochemical Southern 
Ocean State Estimate and the Southern Ocean Carbon and Climate Observations and Modeling-Era Objectively Mapped 
pH Product

February 55 m August 55 m February 700 m August 700 m

Product Mean Std Mean Std Mean Std Mean Std

B-SOSE 0.017 0.033 −0.007 0.024 −0.014 0.025 −0.016 0.029

SOM-pH 0.002 0.015 0.001 0.008 −0.003 0.012 −0.003 0.013

Note. Differences have been significantly reduced by the mapping.
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(a), as the GLODAPv2 values are significantly higher than SOM-pH due to the approximately 15 years time 
difference that the products represent. This difference of SOM-pH minus GLODAPv2 (Figures 4b and 4d) makes 
it clear  that at 55 m the structures are similar, but there is a strong mean difference of up to about 0.1 pH units in 
the products. At 700 m depth there is also a strong difference reaching about 0.1 pH units in the subtropics, but 
the difference is patchy in the ACC region and in the subpolar gyres.

The SOM-pH in December to March minus the GLODAPv2 product has a mean at 55 m of −0.049 with a stand-
ard deviation of 0.055, and at 700 m the mean difference is −0.019 with a standard deviation of 0.021. Thus 
there is a clear difference between the GLODAPv2 product made from data taken between 1944 and 2017, and 
normalized to 2002, and the SOCCOM-era observations representing approximately 2017. In the next section we 
compare SOM-pH to the raw GLODAPv2 data to assess this change.

4.3. Comparison of SOM-pH to Historic Data

We begin our comparison by sorting the data into five depth bins (100–210, 210–425, 425–750, 750–1,050, and 
1,050–1,500 m) and five spatial regions following Gray et al. (2018) who used the criteria of (Orsi et al., 1995) 
and an Argo temperature and salinity climatology (Roemmich & Gilson,  2009). We assume that the spatial 
region frontal domains are constant with depth. Figure 5 shows these regions, and also shows the 500 m SOM-pH 
map, BGC-Argo observations, and GLODAPv2 observations taken prior to 2009. In Figure 5b the differences to 
SOM-pH are shown, and though at a slightly different depth than the differences shown in Figure 4, they reveal 
similar magnitudes and structures.

We difference all sorted GLODAPv2 pH observations poleward of 35°S. As explained in the methods Section 3.2, 
difference outliers in the bins are removed and then a trend and an associated uncertainty are calculated. A 
significant trend is found in each depth bin, with a magnitude that decreases with depth (Figure 6a). These trend 

Figure 4. Example pH fields from the Global Ocean Data Analysis Project version 2 (GLODAPv2) mapped product: (a) pH at 55 m and (c) pH at 700 m. These panels 
are analogous to the Southern Ocean Carbon and Climate Observations and Modeling-era Objectively Mapped pH (SOM-pH) maps shown in Figures 2a and 2c, though 
the color axes are different in panel (a) as the GLODAPV2 product has much higher pH values. The summer (December to March) BGC-Argo float pH observations 
are superimposed as filled markers with black outlines. Panel (b) is the difference SOM-pH minus GLODAPv2 at 55 m while Panel (d) is the difference at 700 m. The 
summer average SOM-pH fields are used for differencing as the GLODAPv2 mapped observations tend to have a summer bias. Black contours denote, from south to 
north, the Southern ACC Front, Polar Front, Subantarctic Front, and Subtropical Front.
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values are given in row 1 of Table 2. Next we take the 425–750 m bin and further subdivide the data by spatial 
domain (Figure 6b). The uncertainties, given in Table 2, show that all trends are significantly different from 
zero. The overall trend in this depth layer is shown for reference in blue, and the trend is strongest in the PFZ 
(Figure 6b). The trend in the STZ is greater than the regional average, the SAZ trend matches this regional aver-
age, the trend is weaker in the SIZ, and is almost negligible in the AZ.

The average SOM-pH value in each depth bin and region gives the current estimated state, with lower pH at depth 
and highest pH in the STZ surface waters (Figure 7). Panel C shows this estimate is informed from approximately 
3,000 BGC-Argo observations in each depth bin, with roughly 900 in the SIZ and 500 in each of the other four 
zones. We carry out the trend calculation for both H + and pH, as these can be different (Fassbender et al., 2021). 
However for this analysis we find the results to be qualitatively similar.

In addition to confirming the vertical structure shown in Figure 6a, Figure 7d also demonstrates that the trends 
display a meridional structure. The largest trends are at the surface in the SIZ and the 210–425 m layer of the SAZ. 

Figure 5. (a) Summer (December to March) average pH from the Southern Ocean Carbon and Climate Observations and Modeling (SOCCOM)-era Objectively 
Mapped pH (SOM-pH) product at 500 m. The spatial zones of analysis are separated with black contours. From north to south the zones are the Subtropical Zone 
(STZ), Subantarctic Zone (SAZ), Polar Frontal Zone (PFZ), Antarctic Zone (AZ), and Sea-Ice Zone (SIZ). Small circles with black outlines are 500 m summertime 
BGC-Argo observations. Larger circles with white outlines are 500 m observations from the Global Ocean Data Analysis Project version 2 (GLODAPv2) database 
taken prior to 2009, and thus represent the first half of the historical record. This is done to emphasize the change from times before 2009 to the SOCCOM-era of 
approximately 2017. (b) The summer SOM-pH map minus the GLODAPv2 observations taken prior to 2009 at 500 m. The change is mostly negative indicating 
reduced pH for the current day state.

Figure 6. Difference scatter plots and trend fits: Global Ocean Data Analysis Project version 2 observations minus Southern Ocean Carbon and Climate Observations 
and Modeling-era Objectively Mapped pH (SOM-pH). (a) All observations poleward of 35°S minus SOM-pH binned by depth levels. The colored dots represent 
individual observations, with most profiles covering all depths such the dots overlay each other. The lines are linear fits. (b) Same as (a), except now binning the 
425–750 m bin into each spatial zone. The blue line shows the trend for all observations poleward of 35°S for reference, and thus matches the line for this depth bin in 
panel (a). An uncertainty analysis deems all trends to be significantly different from zero, with magnitudes and uncertainties presented in Table 2.
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Meanwhile the trends in the AZ at 750–1,050 m are indistinguishable from zero. This pattern is indicative of the 
MOC. We summarize this by superimposing the classic Southern Ocean MOC (Speer et al., 2000; Talley, 2011) 
on top of the trend plot (Figure 8). Here we can see that where the Upper and Lower Circumpolar Deep Water 
(UCDW, LCDW) upwells (i.e., in the AZ) the trend is small or negligible. These are old waters and have had the 
least recent exposure to the surface. Antarctic Surface Water (AASW) sits at the surface of the SIZ and is exposed 
to the atmosphere. These waters have the strongest pH trend in the Southern Ocean. The upwelling UCDW and 
some LCDW interact with the atmosphere and other upper ocean water masses to be transformed into SAMW, 

Table 2 
pH Trend Values and Uncertainty (decade −1) for Each Region and Depth

100–210 m 210–425 m 425–750 m 750–1,050 m 1,050–1,500 m

<35°S −0.0199 ± 0.0003 −0.0174 ± 0.0003 −0.0151 ± 0.0003 −0.0114 ± 0.0003 −0.0075 ± 0.0004

STZ −0.0187 ± 0.0007 −0.0166 ± 0.0006 −0.0170 ± 0.0006 −0.0159 ± 0.0006 −0.0121 ± 0.0007

SAZ −0.0222 ± 0.0007 −0.0233 ± 0.0006 −0.0142 ± 0.0007 −0.0092 ± 0.0007 −0.0069 ± 0.0007

PFZ −0.0216 ± 0.0008 −0.0208 ± 0.0008 −0.0207 ± 0.0008 −0.0103 ± 0.0008 −0.0076 ± 0.0009

AZ −0.0134 ± 0.0010 −0.0023 ± 0.0010 −0.0033 ± 0.0010 0.0002 ± 0.0011 −0.0047 ± 0.0011

SIZ −0.0242 ± 0.0007 −0.0198 ± 0.0007 −0.0114 ± 0.0008 −0.0091 ± 0.0010 −0.0069 ± 0.0011

Figure 7. (a) The average Southern Ocean Carbon and Climate Observations and Modeling-era Objectively Mapped pH (SOM-pH) value in each depth bin and 
region. (b) H + trend (day −1) of Global Ocean Data Analysis Project version 2 (GLODAPv2) observation differences to SOM-pH binned by depth and spatial region. (c) 
Number of GLODAPv2 observations in each depth and spatial region bin. (d) pH trend (decade −1) of GLODAPv2 observation differences to SOM-pH. These pH trend 
values are also given in Table 2, showing that trends are all significantly different from zero except for the 750–1,050 m bin in the Antarctic Zone. The most poleward 
region, the Sea Ice Zone, is on the left, and the most equatorward region, the Subtropical Zone, is on the right.
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AAIW, and SASW. SAMW and AAIW are subducted to depth in the PFZ and SAZ, and then travel equatorward 
in the STZ. SASW is transported equatorward in the upper ocean. These waters show strong trends, implying 
that atmospheric exchange is dominating the trend signal, and sequestration of carbon by SAMW and AAIW is 
leading to strong pH trends in the intermediate ocean depths. Indeed, the strongest trends in the 750–1,500 m 
depth range occur in the STZ.

5. Discussion and Conclusions
The results presented here show a significant trend in pH in the Southern Ocean over the last 30 years. This trend 
has spatial structure consistent with the MOC. Old waters are being brought poleward and upwelling largely in 
the AZ. This AZ region has waters with less exposure to the surface high anthropogenic CO2 signals, and indeed 
shows minimal trends at most depths. As these old waters approach the surface, some will move poleward in the 
SIZ and then recirculate or subduct. Thus it is not surprising to have strong trends in the upper 425 m of this 
SIZ region. Other waters reaching the surface in the AZ will move equatorward into the PFZ and SAZ and be 
subducted equatorward in the upper branch of the MOC. One may therefore expect the newly ventilated carbon 
rich waters to be found in the upper 750 m of the SAZ and into the STZ, and this is exactly what is observed. Old 
waters appear to be upwelled in the ACC, taking up increased CO2 before subducting to the north. This is inferred 
by comparing the SOM-pH product with the raw GLODAPv2 data (Figure 7), and also with the GLODAPv2 
mapped product (Figure 4): the strongest differences at 700 m occur in regions where one expects relatively 
recent ventilation by SAMW (Jones et al., 2016).

The spatial pattern of the pH trend points to air–sea carbon exchange as the causal mechanism. There are South-
ern Ocean regions that show net outgassing of carbon and regions that show net ingassing. We hypothesize that 
the outgassing is now weaker and ingassing now stronger due to anthropogenically driven increased atmospheric 
carbon levels. This is to be expected as ocean surface pCO2 levels appear to be increasing by about 19 μatm 
per decade nearly uniformly across the world oceans, which is also approximately the rate of increase in mean 
atmospheric pCO2 (Takahashi et al., 2014). Our hypothesis of the trend being anthropogenically surface forced 
is consistent with previous findings attributing surface pH trends of approximately 0.02 per decade along repeat 
hydrography lines in the South Pacific to the magnitude of the atmospheric pCO2 trend (Williams et al., 2015). 
Moreover, inferred anthropogenic carbon changes along these hydrographic repeat lines show a similar pattern to 
the pH trends we find, with a reduced inventory in upwelling latitudes (Carter et al., 2018; Gruber et al., 2019). If 
the trends were primarily from internal ocean variability one would not necessarily expect the magnitudes to vary 

Figure 8. Trends from Figure 7d, but with a schematic of the Southern Ocean meridional overturning circulation superposed. 
This schematic is adapted from Talley (2011), and was originally published in Speer et al. (2000). Depth is on the y-axis, 
and the x-axis shows the regional zones of analysis, with the fronts separating them denoted at the top: Southern ACC 
Front (SACCF), Polar Front (PF), Subantarctic Front (SAF), and Subtropical Front (STF). Black lines denote the isopycnal 
slopes. Thick black arrows denote the overturning circulation, with eddies denoting diapycnal exchanges. Lower branch 
upwelling waters are labeled: Lower and Upper Circumpolar Deep Water (LCDW, UCDW). Once these waters upwell they 
are transformed via air–sea interaction into Antarctic Surface Water (AASW), Subantarctic Mode Water (SAMW), Antarctic 
Intermediate Water (AAIW), and Subantarctic Surface Water (SASW).
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so substantially across upwelling and downwelling regions of the Southern Ocean. Nevertheless, we cannot rule 
out that some of the trend structure may result from changing ocean circulation, and further attribution studies 
should be carried out. Comparing the pH trends with other property trends may better inform causal mechanisms.

The Southern Ocean is incredibly energetic, and internal ocean turbulence is so great that interannual variabil-
ity in physical properties can be hard to detect over the shorter timescale variability. Indeed, detecting heating 
trends requires careful accounting for eddy variability (Gille, 2002), but is made possible due to a relatively large 
amount of temperature data. Earlier works have assessed pH trends by “matchup” or cross-over calculations. 
These include eddy noise in both components, and thus the results were less robust. By building a climatology 
for the SOCCOM-era we are giving a best estimate of the eddy-filtered current state. Yet given sparse sampling, 
we acknowledge that eddy variability can creep into our product. Nevertheless, the trends are clearly detectable 
above the uncertainty in pH due to their significant magnitude. We find that pH is decreasing by approximately 
0.02 per decade over large regions, which is consistent with the previous match-up based works (Midorikawa 
et al., 2012; Ríos et al., 2015; Swart et al., 2018). With a typical pH dynamic range estimated at 0.2, this therefore 
represents a 10% change to pH each decade.

While useful, the schematic in Figure 8 is overly simplified. The Southern Ocean MOC follows a complicated 
three-dimensional path (Tamsitt et al., 2017). Because data are too sparse to sort by longitude, as can be seen in 
Figure 5 where all profiles taken before 2009 are shown, we have chosen to sort only by depth and meridional 
region for this paper. Thus a caveat of this work is that we may be aliasing this zonal structure into our interpreta-
tion of the relationship of acidification with the MOC. Assessing trends along density surfaces may help account 
for the influences of both eddy and zonal structures. However, the thickness of the bins and the zonal structure in 
our meridional regions are an attempt to mitigate these issues, and we leave more targeted efforts to understand 
the full structure of pH changes to future studies.

The SOM-pH product is made available as Data Set  S1. We anticipate future updates to this product as the 
BGC-Argo array continues to provide vital observations of ocean health. We also plan to apply this mapping 
methodology to other BGC-Argo observation, including nitrate and oxygen. We hope this SOM-pH BGC-Argo 
map will be useful for understanding the changing Southern Ocean properties and ecosystems.

Data Availability Statement
SOM-pH is available at http://sose.ucsd.edu/CLIM/PH-QCv3-v10r1.nc and as Data Set S1 provided with this 
manuscript. Argo data (Argo, 2020) were collected and made freely available by the International Argo Program 
and the national programs that contribute to it (http://www.argo.ucsd.edu, http://argo.jcommops.org). The Argo 
Program is part of the Global Ocean Observing System (http://doi.org/10.17882/42182).
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